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The Netherlands 

Received 19 March 1993 

Abstract. Symmetry methods for differential equations are a powerful tool to atrack nonlinear 
problems, in particular for determining solutions with given symmehies to nonlinear PDFS. Since 
in real applications one is often interested in solutions which are arvmptofically symmetric, we 
propose here an approach to aFympfotie symmetry based on the methods of Lie theory. We 
adopt, translake in geometric language and develop the renormalization group approach recently 
proposed by Bricmont and Kupiainen for h e  Ginzburg-Landau equation. 

1. Introduction 

Application of symmetq' methods in the study of differential equations-both ODES and 
PDEs-has proved in recent years, to be one of the most powerful ways to attack non-linear 
problems. 

We refer to [1-3] for the general theory and applications (see also [4-6] for earlier 
references, and 17-10] for short introductions), as well as ,to [10-18] for the subject of 
conditional (or partial) symmetries, and will assume in the following that the reider has 
some familiarity with the subject. 

These methods are, in particular, quite effective in determining solutions with given 
symmetries to non-linear PDEs. The point we would like to make in the present note, is 
that in real applications one is often interested not so much in solutions with a given exact 
symmetry, but rather in solutions which are asymptotically (in time and/or space) symmetric. 

As a simple example for the occurrence of such a situation, consider the ODE dy/dt = 
-2ty' which is invariant under the scaling t + At, y + A-'y and has as solution 
y(t) = 1/(1 + t'). This solution is not invariant under the above scaling, but in the 
limit t + fw the scaling symmetry is asymptotically recovered. 

We want indeed to propose an approach to aSymptotic symmetry based on the above 
mentioned, we11 known methods of Lie theory (LT) approach to differential equations (DES 
in the following). 

Although OUT approach could seem original, what it is done here is merely to adopt-and 
translate in the LT language-the renormalization group (RG) approach recently developed by 
Bricmont, Kupiainen and Lin (in the following, BKL), who also studied a specific problem, 
namely the Ginzburg-Landau equation [ 19-21]. More precisely, we develop an infinitesimal 
RG approach in the language and framework of LT. Apaa from the interest of thk in itself, 
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it is hoped that such an approach could later permit making a contact with recent results 
concerning the existence results for solutions of non-linear Yang-Mills-type equations on 
the basis of their symmetry properties; these results could in turn be themselves applicable 
to pattem-formation problems [20]. 

To the best of my knowledge, no mention is made of asymptotic symmetries in the 
literature concerned with Lie-theoretic study of differential equations; the emphasis has in 
general been placed on exact or on partial symmetries (see the references above). Recently, 
several authors have considered upproximare symmerries 1231, but no consideration was 
given to their asymptotic properties; moreover, 2 the simple example above shows, one can 
have asymptotic symmetries which are not symmetries and not even approximate symmetries 
out of the asymptotic region. 

In the following, the total space M (to be defined below) will simply be a product 
of real spaces, i.e. will have a trivial topology. It would obviously be of interest-both 
theoretically and in view of practical applications-to consider topologically non-trivial 
situations. Anyway, we will not attempt such an analysis here, and possibly postpone this 
task to a later time. This is motivated not ody  by the need to analyse the simpler case 
of trivial topology before attempting to consider global phenomena, but also by the fact 
that the present approach is primarily intended to study physical phenomena for which the 
trivial topology of the total space is the natural one, such as the formation of patterns 
in open systems [24,25]; actually, in some of these cases the main difficulty (e.g. the 
continuous spectrum in the bifurcation analysis of the Swift-Hohemberg equation l24.251) 
would disappear by imposing a non-trivial topology (e.g. imposing periodic or Neumann 
boundary conditions on a finite space domain). 

The paper is organized as follows: in section 2 we recall how equations and functions 
are naturally seen as geometrical objects, i.e. manifolds in appropriate spaces; in section 3 
we consider vector fields in the total space M (i.e. the space of dependent and independent 
variables) of a differential equation and its prolongation to the jet space; in section 4 we 
see how these vector fields induce an action in the spaces of sections of some fiber bundles, 
which are the natural ones to set our discussion in view of the construction of section 2 this 
will induce an action of vector fields defined on M to the associated spaces of functions and 
equations; we are thus ready to consider in section 5 the symmetry properties of functions 
and equations in this new geometrical setting. In section 6 we define and consider the 
asymptotic sy"eries using some simple concepts from dynamical systems theory, and in 
section I we discuss how these can be of use in the analysis of asymptotic properties of 
equations and their solutions, together with some general remarks. In the final section 8 we 
present a variety of examples to illustrate our setting and results that can be obtained in it, 
both for dynamical systems and for the evolution PDES. More complex applications will be 
presented in a separate work. 

2. Equations and functions as geometrid objects 

In order to fix notation, we will begin by shortly recalling some features of the LT approach 
to DES. 

We will denote by x the independent variables (at this stage we do not distinguish 
between space and time variables) and by U the dependent ones; x and U will belong 
respectively to the spaces X and U, which here we assume to be embedded smooth 
submanifolds of Rq and RP. The total space will be 

M = X x U  
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and we wi!l consider the jet  spaces [ 1,26-28] associated to M; these can be seen locally as 

(2) 
where U@) is the space of dependent variables and their partial derivatives of order up to 
n. The global geometry of J"M depends on the geometry of X and U as well as on the 
boundary conditions imposed on the DE. 

J"M = X x U'"' 

A DE will be written as 
A :E F(x,  U'"') = 0 (3) 

A + SA ( ( x .  U") : F(x,  U") 0} C J"M. (4) 

and is identified with the solution "$old S that it specifies in J"M: 

As for solutions to A, any function f : X -+ U is also identified with a manifold in M, its 
graph YJ: 

(5) 

Clearly, once we have f (or yf) we also have its prolongation f(") (or y:' = y p ~ ) ,  which 
is obtained by simply considering partial derivatives o f f  up to order n: 

y:"' = [ (x,  U(*)) : U(") = f'"'(x)] c J"M. (6) 
A function f : X + U is then a solution to A if and only if 

y/ = [ ( x ,  u ) ~ :  U = f ( x ) )  z M. 

y:' E S A .  (7) 

3. V&r fields on M 

Let us now consider vector fields VFs) on M, i.e. elements q of M = 'Diff(M). These will 
be written as 

Such a VF can be prolonged to a VF q(n) on J " M ,  by the standard prolongarion formula 
[I-31; in multi-index notation [I], this is 

q = DJ [pa - C ' U ~ ]  + ~ u : J  (10) 
where D is the total derivative. 

Such a VF generates a oneparameter group of diffeomorphisms of M (and consequently 
of J"M);  notice that smooth submanifolds of M will be transformed into smooth 
submanifolds of M, but not necessarily graphs into graphs (see e.g. the discussion in 
[I]); indeed, a graph is better seen as a section of the bundle (M. X, n), with total space 
M, base space X and projection R ( X ,  U) = x .  Only elements of M preserving the fibered 
structure will transform graphs into graphs. These elements form the algebra 

A46 = 'Diff(X)$,Diff(U) (11) 
which we will consider from now on: here (3, denotes semidirect sum, and the subscript 
G stands for 'gauge' (see [223). 

Elements of M c  are written, in the notation already used in (8). in the form 
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4. Induced actions of M on functions and equations 

Clearly, the action of q E MG induces an action in the space'r of smooth sections of 
( M ,  X, x ) ;  under this a section y = yj will be transformed into a new section y' = y,,; in 
other words, q induces an action in the space of smooth functions f : X + U. 

This action can be determined as follows: we have that points (x ,  U) are acted upon as 

(1 fEV)(X,  U) = F, 2 = (x  + E?%), +EP(X, 4) 
and we want to find an Tsuch that C= fia. By the above formula, at first order in E we 
have 

U = f ( X ) + E P ( X , U )  = f ( X " - E E S ( X ) ) + E P ( X " - E E S ( X ) , U )  

= fO + E  [P (X" + O(E). f(3 + O W )  - (Of) ' f ]  + O(E7 

= f(3 $. E [P 6 3  f O )  - (5 ' Df)] 

(e'vf), ( x )  = Y(x) + EW'(X)  + o(E') 

so that the action of q in r can be described by the formal VF v: r -+ Tr which acts as 

Note that if we introduce the space rs c r of smooth sections being the graph of solutions 
to A (i.e. of y E r such that y c .SA), then for q E GA we have ;i : Ts + T r s ;  this 
is indeed a direct translation of the statement that a symmetry of the equation transforms 
solutions into solutions. 

It should also be remarked that r is a smooth infinite dimensional manifold, in general 
not complete; this means that when considering the flow of diffeomorphisms on it we must 
pay attention to the meaningfulness of limits.t 

In a similar way, the action of q(") in J"M also transforms smooth submanifolds of 
J"M-as the solution manifold SA-into smooth submanifolds of J"M, since equations 
are identified with their solution manifolds, this also induces an action in the set E& of 
equations of order n with variables in M .  

Here we are mainly interested in evolution equations, in which case some extra care 
must be taken, as we will now discuss. 

We denote by x the spatial independent variables, and by t the time variable. An 
evolution equation will be one of the form 

(14) 

where UA is a smooth function of its arguments and uLnl represents dependent variables and 
their partial derivatives with respect to space variables only up to order n. 

In this setting, J"M can be seen as a bundle whose fiber corresponds to the space of 
r-derivatives of the U'S ,  and the base is the space of independent and dependent variables 
together with their derivatives of order up to n with respect to the space variables; this will 
be called the nth space jet, JZM.  With K the projection K : J"M -+ J;M, the evolution 
equations in E; are then in correspondence with elements of the space of sections of 
( J " M ,  JZM,  K) .  In other words, the evolution equation (14) is identified with the section 
aA E 

t This nonzompleteness is due to the requirement of Smwthness for section to be in r; in physical terms. if for 
q E FA. the flow of 7 in r drives y, to X /  r; this means that f is transformed into a singular solution. 

A :E ut = G ( x ,  t ;  dnl) 

given by the graph of G .  
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Remark. Note that in this setting the section UA corresponds to the solution manifold SA, 
i.e., a point (or, p) E J " M ,  where or E J;M, p E  or), is in SA if and Only if p = uA(or). 

Note also that now the condition q E M G  is not sufficient to ensure that q(n) : C + TC; 
to achieve this, we must ask instead that q E M b  C M G ,  where ML is given by 

M ;  = [Diff(T)@,Diff(X)] &'Diff(U). (15) 

Here and in the following, t E T, x E X, and 

M = (T  x X) x U. (1') 

Elements of M b  will be written in the form 

a a a 
q = r(t)- + P ( x ,  t)- + pyx.  t ;  U)-. 

at ax1 ~ a u n  

Now the action induced by q in C can be determined pretty much in the same way as 
done for y above. We write equations in the form (14) and obtain that 

where we have used again the multi-index notation and +$ are given by the prolongation 
formula (10). 

Summarizing the discussion conducted up to now, we have considered VFS in M ,  and 
then restricted our attention to ME c M ;  for any VF q E Mb,  we have considered 
associated VFs q('), y, ii; acting in the spaces as follows: 

q : M +  TM 
q@) : J " M  -+ T ( J " M )  
y :  r -+ T r '  
q : C +  TC A 

Then q oy: rS+ Trs .  

5. Symmetries, and fixed points of the induced flows 

In LT, it is customary to focus attention on the symmetries of equations and of solutions; 
according to the standard definitions [ M I ,  the,,symmetry algebra GA of the equation 
A E E h  is the algebra 

GA = [ q  E M / q(n) : SA + TSA] _C M .  (18) 

Similarly, for a function f : X -+ U, the symmetry algebra Gj is defined as 

Gj = Iq E M I q : Y/ -+ TYjI. (19) 

As discussed above, in this context we actually want q E M G  C M in (18) and (19). 
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Note that for f a solution of A-i.e. such that y?’ c SA-it is not necessary 
that Gf 5 GA; the VFs which are in Gf for some solution f but not in SA correspond 
to conditional symmetries [10-18]. Physically, conditional symmetries correspond to the 
possibility of solutions having symmetries which are not a symmetry of the equation: for 
example, the equation 

(a: + 3;) f = -w + + y 2 ) f  + B Y 2 f  + (B/a)YaYf  

(a, B are real constants) which is not symmetric under rotations in the ( x ,  y )  plane, admits 
the solution 

-.(9+y2)/2 f (x.  Y) = e  

which is rotationally symmetric. 

in terms of the ws f i  and ;i introduced above. Indeed, it is clear that 
Now the symmetry conditions used in (18) and (19) to defme GA and L7f can be expressed 

are equivalent to our previous definitions (18) and (19). 

define a dynamical system [29-331 in the spaces r and E, which we write formally as 
Let us look at this again but from a slightly different point of view. The ws f i  and ij 

(here the dot denotes differentiation with respect to an evolution parameter A (see (18’). 
(19’)) and not with respect to the physical time); the evolution of (20) and (21) gives the 
solutions 

where we have used a notation which is standard in the dynamical systems theory: i.e. if 
~ ( A o )  = yo, then y (A)  = Q(A - Ao, yo), and likewise for U@). We can then restate our 
symmetry criterion as follows: 

Symmetry criterion. Afunction f is symmetric under q if and only if the corresponding 
section yf E r is a fued point for the flow generated by fi. An equation A is symmetric 
under 0 if and only if the corresponding section uA E E is afuedpoint for thejbwgenerated 
by ii: 

The asymptotic symmetries will be defined by means of this formulation; to this aim we 
must consider the flows (20) and (21) in greater generality, i.e. not limiting our attention 
to the fixed points. The general theory of dynamical systems and flows is neatly exposed, 
for instance in [29-331, to which the reader is referred. . 
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6. Asymptotic symmetries 

As for every flow in finite or-as is the case here-infinite-dimenslonal case, we can 
associate at least a local stable, unstable or centre manifolds to every fixed point po of the 
flows (20) and (21). These will be denoted W,(po), W.(po), W&), respectively, and 
are tangent in po to the stable, unstable and centre eigenspaces, L,(po), L.(po), L,(po), 
respectively. These are the spaces spanned by the eigenvectors of L(p0) with negative, 
positive, and zero real part eigenvalues, respectively; L(p0) is the linearization of the 
relevant VF U at the point po (for further details, including the difficulties that can be met 
in defining the above mentioned objects, we refer to the books quoted above [29-331). 

We recall that W,(po) and W.(po), respectively, are defined as the manifolds of points 
p such that the limit for t + CO of the flow issuing from p and obeying p = U@) is PO; 
and respectively the limit for t + CO of the time-reversed flow issuing from p and obeying 
p = -u(p) is PO. One also says [291 that PO is the o-limit for all points p E W,(po), and 
the a-limit for all points p E W,(po). 

To rephraseit: for any p E W&o) and 6 =- 0, there is t > 0 such that I&, p)-pol c 8 ,  
where (0 is the flow starting from p at t = 0 and following p = u ( p ) ;  and for V p  E W&O) 
and 6 > 0, there is t > 0 such that lq*(t, p )  - pol .c 6, where p' is the flow starting from p 
at t = 0 and following p = -u(p). (In the following, an upper * denotes the time-reversed 
flow). This suggests and motivates the following: 

Defutition. The VF q E M G  is an o-asymptotic symmetry of the function f : X --f U 
if and only if IimAdm @(A, yf) = y? is a ftied point under F, i.e. eAFy? = y? VA. 
The VF q E M G  is an a-asymptotic symmetry of the function f : X + U if and 
only if l i ~ - , - ~  @(A, yf) = limA+m @*(A, yf) = y;" is a fved point under ;i, i.e. 

Note that, since q is a diffeomorphism, it is legitimate to consider timereversed flows, 
and yo is a fixed point under F if and only if it is a fixed point under -y. Note also that 
fixed points under 

A5 -m=,,;mvAh. 
e y/ 

are the functions f such that F(y/) = 0. 
We also give a similar definition for the asymptotic symmetries of equations: 

Definition. The VF q E M is an o-asymptotic symmetry of the equation A E E& 
if and only if limi-,m Y(A, UA) = ur is a fired point under ?i, i.e. e%? = ur 
VA. The VF q E M is an a-asymptotic symmetry of the equation A E EL if and 
only if lirnA-,-m Y(A, U A )  r limA-,m **(A, U*) = u i m  is a fired point under ?i, i.e. 

The reason for the name 'asymptotic symmetry' is quite clear: e.g. if q is an o- 
asymptotic symmetry of f ,  then under the flow of ;i the function f is driven to a function 
fa for which q is an ordinary symmetry, and likewise for uA. 

Important remark. We stress that 'asymptotic' refers to the flows induced by the VF q. 
Asymptotic properties in this sense can correspond or not to asymptotic properties in time 
and/or space, depending on our choice of q. 

A? -m = u i m  ~ 2 .  e uA 

7. Discussion 

Let us now shortly discuss the utility and the practical use of the setting developed in 
sections 4-6. As we have seen, given a DE Ao, we are free to choose to consider a VF q 
which may be or may not be a symmetry VF for A,$ let us consider the two cases separately. 
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Case A. 
Let us assume that q is a symmetry of Ao; that is, 

(W A qAo = 0. 

In this case the solution manifold SA c J"M is invariant under the flow of q@); the space 
rs of sections being the graph of solutions to A0 (see section 4) is therefore also invariant 
under ;i. Namely, (24) implies that 

q(") : SA + T S A ;  v: I's + Trs .  (25) 

Let us denote all independent, i.e. spacetime, variables by x and assume that lim[e%; A -+ 
kw] describes the asymptotic region we are interested in, for all n E X. Then the 
asymptotic behaviour of a solution U = f ( x )  to A0 is described by the limit f+m of 
eiFf for A *W. 

In particular, if the flow of F in  rs c r happens to be w-asymptotic or a-asymptotic, 
respectively, to a lower dimensional set or rr), respectively, the elements of this set 
give a classification of the asymptotic behaviour of solutions to Ao; in the renormalization 
group language, we say that they identify universality classes. 

We have therefore the same setting (including motivation and use) as in the BKL analysis 
[19-211 of discrete RG approach to parabolic PDEs and asymptotic scaling behaviour of 
solutions. The present setting extends their ideato infinitesimal RG, and to general prescribed 
asymptotic behaviour. 

Case E. 
Let us now consider, for a DE A0 with solution manifold S, = SO, a VF q which is not a 
symmetry of Ao; i.e. we now assume 

FAO P 0. (26) 

induces a non-trivial flow in the space of equations (see section 4); we can In this case, 
write 

e"Ao = AA (27) 

and denote by SA, = SA the solution manifold of Ai. As remarked in section 4, Ai ,  Si and 
the associated section c r ~ ~  CL are realizations of the same geometrical object in different 
languages, and it is therefore clear that (27) implies 

e'""'S0 = SA. (253) 

Let us now consider a solution fa to Ao, and denote by yfo 
consider the flow originating from fo (that is, yo) under r, and write 

yo its graph. We do now 

ei"o = fA. (29) 

We now denote by yfi yk the graph of fA. By virtue of (28), 

YO c SO * YA c SA (30) 

so that while transforming the equation, q transforms accordingly the solutions. By letting A 
go to &CO in (27-29), and Writing Aim, fkm for the limits if they exist (which we assume 
in the following), we have: 
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Iff0 is a solution to A0 and the limits fim. A i m  exist, then f*- is a solution to Lemma. 
A i -  

Corollary. rf A0 -+ A, for h + ?coo under (271, then all the solutions fo of A0 go to 
solutions f* of A* under (29). 

This again permits us to classify equations in universality classes (identified by the limit 
equation A*), and inside each class of equation we can give a classification of solutions in 
universality classes according to their limit behaviour. 

Note, anyway, that if fo is a generic function such that f* is a solution to A* (with the 
above notation for these), fo is not necessarily a solution to Ao; namely, the fact that f* is 
a solution to A, is a necessary but not sufficient condition for fo to solve Ao. 

In other words, if-given A* and a solution f*-we are able to determine the stable 
manifold W, of f* under the flow of T, this will not automatically lead to solutions of Ao; 
on the other side, as stated in the corollary above, all solutions to A0 (and any AA, for 
that matter) with prescribed asymptotic behaviour must lie in W,, so that this can provide 
a useful reduction. 

7.1. Some general remarks 

It should be stressed that the classifications considered above are only able to capture 
those equations and functions whose asymptotic behaviour under the flow induced by the 
considered VF q is particularly simpl-indeed, a fixed point. This behaviour is by no 
means a trivial feature, and indeed for a generic 7 we will have no solutions admitting such 
a limit; this should be no surprise, as it just means that no solutions have the asymptotic 
symmetry described by 7, and we just have to try another VF. 

While in same cases the kind of asymptotic behaviour one is interested in is given a 
priori (e.g. by physics modelled by the equations), it is a natural question to ask how one 
could classify the possible asymptotic behaviours of solutions to a given DE A0 (maybe 
inside a certain class, see examples 3 and 4 below). 

In the case A above, we can a priori give an answer, but this is of little practical 
use in general; we should (i) consider-i.e. determine-the algebra G A ~  of the Lie-point 
symmetry VF of Ao; (ii) select in GAo such VF q that the flow of in r admits fixed points; 
(iii) check if these fixed points correspond actually to solutions of Ao, i.e. if they lie on 
rs c r. Clearly this procedure ‘by exhaustion’ is not easy to implement, unless either the 
algebra L ~ A ~  is small or we can restrict the case to some subalgebra by physics arguments 
(we note in passing that this is the case e.g. for the heat equation [1,2]). The situation is 
even worse for the case B above, i.e. if we do not restrict to considering symmetries of the 
equation Ao. 

While I am unable at the moment to propose any systematic approach to the 
determination of VFS which would be asymptotic symmetries of solutions to a given DE 
Ao, it is quite conceivable that such a systematic approach can be found along the lines of 
‘the well known methods for determining the possible exact symmetries of solutions to Ao, 
such symmetries being, or not being, symmetries of the differential equation itself; see e.g. 
[10-181. 

It should also be stressed that our discussion has been purely formal; i.e. we have 
not discussed the existence of limits, convergence of series, smoothness of functions, etc; 
at each step, we have assumed the objects to exist and to behave in the proper way. The 
examples to be considered in section 8 will show that the frame developed here is not empty, 
and actually applies to relevant physical equations and types of asymptotic behaviour. 
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On the whole, what is proposed here is a framework to discuss general asymptotic 
properties of (solutions to) differential equations; it is hoped that this also permits one to 
connect the powerful results and techniques of symmetry analysis of differential equations 
11411-181 on one side, and pattern formation theory 119-21,24,25] on the other. 

8. Examples 

At this point, we would like to consider a few examples in some detail. 

Euunple 1. Let X = U = R and consider the equation U = -cu, with c a positive real 
constant. The solutions are f ( t )  = e-%, for (I E U = R Let us consider the VF q = -at: 
by (13). (Sf)(t) = af/at. Note that q corresponds to a symmetry of the equation, so the 
space of solutions is invariant under f. If we index the solutions by (I, i.e. f&) = e-cfor, 
the flow induced by f in rs c r is simply 

do! 
cu. CLY. _ = -  

This shows that yo = 0 is the only fixed point, and that all solutions are attracted to it. 
Indeed, fo(t) 0 is the only solution which possesses time-&anslation invariance, and all 
solutions satisfy limt+m f ( t )  = 0 =. 

Example 2. Let X = R, U 2 RP; consider the p-dimensional autonomous dynamical 
system 

(32) 

A solution ui = f ’ ( t )  satisfies df‘(t)/dt = F‘ ( f ( t ) ) .  Let us consider again the VF q = -af, 
which is again a symmetry of the equation; by (13). this acts on f as ( 8 f ) ( t )  = a f p t ,  
which means that the flow under T is 

i U’ = F (U). 

d f ‘  - = F’(f). a (33) 

Again, w-asymptotic symmetry under 7 and r-asymptotic invariance under a, are equivalent, 
and only solutions U’ = f’(f) such that lim++m f ( t )  is a zero of F have a, as w-asymptotic 
symmetry; only solutions U = f ( t )  such that lim,++,f(t) is a zero of F have a, as 
wasymptotic symmetry. Note that solutions f ( t )  having q as both (I- and w-asymptotic 
symmetries are either stationary ones, either homoclinic or heteroclinic orbits connecting 
fixed points. 

Example 3. Let us consider the autonomous, rotationally invariant, dynamical system 

x = + x - ay - (2 + y2)x 

y = + y + Qx - (2 + y2)y 

and let us consider the family of VFs 

(34) 
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which are symmetries of the equation. 

f : R 
Here X = R, U = Rz, and r corresponds to the space of smooth functions 

According to (13), the action of &T in r is described by 
Rz; a solution f will also be denoted by f = (x,(r), y,(t)). 

so that we have no non-trivial fixed point under ;i, unless we choose f i  = orQ. Doing this, 
the above equations reduce to 

and therefore all solutions admit vo = a, + Q(xay - ya,) as an or-asymptotic symmetry, 
and q; = -a, - w a y  - ya,) as an w-asymptotic symmetry. 

Note that indeed all non-trivial solutions of our dynamical system are attracted to the 
unit circle and asymptotically are rotations on this circle with angular velocity Q. 

Example 4. Let us consider, mostly in general, the dynamical system 

where r = n, and f (r), Q(r) are smooth functions. The family of Ws 

7 = -a, - w, - Ya,) (39) 
is indexed by the real constant p. Clearly, these are symmetries of our DS for any choice 
of B, f(r), W). 

Proceeding as in the previous example, we get 

-- *’ - +firf + = f(r)x,- + (B - Q(r))yj 

9 = -pxf  + 3f = f(r)yf - (p  - n(r))xf. 

dh 

dh (40) 

These admit non-hivial fixed points in correspondence with solutions of 

Note that indeed solutions to our !X are attracted to circles of radius ro such that rof(ro) = 0. 
and on these we just have uniform rotation with angular velocity Q(r0). 

Note also that in q p  we could equally well promote p to be an arbitrary smooth function 
of r (this Corresponds to a module structure of the symmetry algebra, see [34]); in this case 
the final condition for ria to be an asymptotic symmetry would still he the existence of ro 
such that 

f h )  = 0 = B ( 4 .  (42) 
The flow of ;i will be (Y- or w-asymptotic to the corresponding solutions 

x im = ro cosIQ(ro)t + 81 yim = ro sin[S2(ro)t + 61 (43) 

according to the sign of f’(r0): indeed, we have i = rf(r). 
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Example 5. Let us finally consider evolution PDES; we distinguish time and space variables 
and take t E T =R+, x E X = R ,  U E U =R. Let us consider t h e w  

= -2ta, - xa, + ua. (44) 

t + 7s A-% x + x" = A-'x U --f i i=Au.  (45) 

which generates the scaling 

The effect of applying this to a function f : T x X + U is readily evaluated indeed, eAq 

acts as in (45), so that U = f ( x ,  t )  is transformed into 

(46) 
- 
U = AU = h f ( x ,  t )  =~Af(A?, 1'7) ~(A)(.Y,?) 

or, with the notation introduced in section 4, 

eATf = $A) &(x, t )  = Af(Ax, A't). (47) 
It is clear that the limit fm = lim(.&,, A + CO) captures the asymptotic behaviour of 
f ( x ,  t )  in time and space (i.e. for t + CO, 1x1 + CO). 

Note that by considering the w q* = -q we would have captured the asymptotic 
behaviour of f ( x ,  i )  for small x and t .  

The fixed points under T are functions which obey the scaling laws (45). as it is the 
case for the fundamental solution fo of the heat equation 

We can now compute the action of 7 by (13) or by (47); this gives 

i i f = ( s f ) ( x , o =  f+z ta , f+xa , f  (49) 
(one can easily check that this indeed gives Ffo = 0). 

variables, i.e. in E;; we wite them in the form 
Let us consider specifically autonomous evolution equations of second order in space 

ut uxx + F(u ,  u x x )  (50) 
and restrict to the case of F polynomial (say with F(O.O.0) = 0), i.e. 

F ( u , u x , u d  = ~ C , + S ~ U ~ U ! U ~ ~  = ~ c ~ p y l o r , B ,  Y) (51) 
where a, j3, y mn over non-negative integers (or + p +  y > 0). and in the RHs term we have 
introduced summation over repeated indices and an obvious notation for the monomials in 
U ,  U,, UXX. 

Elements of E$ are now identified by F ,  or equivalently by the coefficients cejr in the 
expansion of F in terms of the basis functions la, j 3 ,  y ) .  By (17), the (linear) action of ;i 
on F is given by 

A aF aF aF  
VF (SF) = -2F + U- + 2u,- + 3u,,-. 

au au, au, 
Note that the heat equation-which corresponds to F = &is a fixed point for the action 
of Tj, as it should be. 

Using (52), we also immediately read the action of T o n  [or, j3, y ) :  this is given by 

i i l ~ . B , ~ ) = ( - - 2 + ~ + 2 8 + 3 y ) l ~ , B . y ) .  (53) 
In other words, lor. B ,  y )  are a diagonal basis for the flow of $ at the fixed point F = 0, 

the stable eigenspace is spanned by II,O,O),  there is a centre eigenspace spanned by 12,0,0) 
and 10, 1,O). and all other directions are unstable. (In considering 7% = -q,  all the signs 
and therefore stabilities would be reversed). 
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Example 6. Let us consider again evolution equations in 1+1 dimensions, t E T = R, 
x E X = R, U E U = R (note that t now spans the entire real line), and equations of the 
form 

U ,  = Au + F(u)  (54) 

with F(u)  a polynomial and F(0)  = 0; The Ginzburg-Landau equation is an example of 
this for 'F(u) = U - luI2u. 

Let us consider the vector field 

11 = -a, - ua, (55) 

which generates the linear shift 

(56) 
- 

t + t = t - A  x + x " = x - A ~  u + i i = u .  

Proceeding as in example 5, we see that 

e*vf = &) .&)(x, t) = f(x - A U ,  t -A).  (57) 

we could also obtain, directly from - (13), the (partial) differential equation for the flow of 
fi*) under ;i: writing @(x,  t ;  A) = f iA, (x ,  t), we have 

ao ao ao 
ah . at  ax 

+U--. _ = _  

If, in particular, f was a solution to (54), we could use this to rewrite (58) as 

ao a2@ ao 
ah ax* ax 
_ = _  +U- + F ( @ )  E A@ + (U. V)@ + F(0). (59) 

Let us now consider fixed points under the action induced by 11; it is clear that every 
autonomous equation-and therefore, in particular, any equation of the form (54)-is 
invariant under q. so that the action of Ton our class of equations will be trivial. 

As for the action of y' the fixed points are given by (58) asking a @ p A  = 0 solving the 
associated characteristic equation, we see (certainly with no surprise) that invariant functions 
are of the form 

(60) 

(These solve (54) if equation (59) with a@P/ah = 0 is satisfied; alternatively, we can 
substitute (60) in (54) and get the same equation.) 

If we now consider the full equation (58). we again have to solve the associated 
characteristic equation; we have then as a (functional) basis of conserved functions 

f(x, t )  = f (x - ut) .  

(I(x, t ,  A) x - ut c z ( x , t ,  A) T = t + A  (61) 

as indeed expected from (57); note that (1 - ut2 = x - Au. Therefore, solutions to (58) can 
be rewritten as 

@ ( ~ , t , A ) = ~ ( ~ - ~ f , t + h ) ~ ~ ( ~ , 5 )  (62) 
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and functions invariant under give 
dependence of @, we find that, with L being the Lie derivative, 

= 0, see (60). Indeed, if we single out the A 

Note that this means in particular that if we Fourier-transform Y in 5,  with the obvious 
notation 

then the basis functions [w)  = eiwr undergo a periodic evolution under the flow of U. Note 
also that if the expansion (64) has non-zero coefficients xQI for different 0 ' s  which are not 
rationally dependent, the evolution of Y is quasi-periodic. 

The evolution of @ under q is particularly simple if we can factorize as 

5 )  = A(r)B(O (65) 

which corresponds to the functions f (x ,  t ) ,  considered above, of the form 

f(x, 0 = a(x ) fo (x  - u t ) .  (66) 

With the ansatz (65), we have L,Y s \U, = A,& if Y(6,z) # 0, and rewriting 
A,  = k(s)A,  we get 

so that e.g. any solution of the form f ( x ,  t )  = e-'('')fo(x - ut )  (where P is a positive 
polynomial) is driven by to the null solution. More in general, we obtain that if Y can 
be written as a converging series 

with A, satisfying A,(s).(dA,(s)/ds) -= 0, then lim[@(x, t ,  A); A + i m ]  = @&-ut). 
Correspondingly, if we write f in the fonn (cf [24], section 28) 

we see that lim[fi&, t ) ;  A + 001 = fo(x-ut )  exactly, if and only if (u~(x) .du&)/dx)  < 
0. If we consider the time-reversed vector field U,: = -U, we should demand instead 
(a&) . dac(x)/a) > 0. 
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